Foreground Segmentation in Depth Imagery Using Depth and Spatial Dynamic Models for Video Surveillance Applications
نویسندگان
چکیده
Low-cost systems that can obtain a high-quality foreground segmentation almost independently of the existing illumination conditions for indoor environments are very desirable, especially for security and surveillance applications. In this paper, a novel foreground segmentation algorithm that uses only a Kinect depth sensor is proposed to satisfy the aforementioned system characteristics. This is achieved by combining a mixture of Gaussians-based background subtraction algorithm with a new Bayesian network that robustly predicts the foreground/background regions between consecutive time steps. The Bayesian network explicitly exploits the intrinsic characteristics of the depth data by means of two dynamic models that estimate the spatial and depth evolution of the foreground/background regions. The most remarkable contribution is the depth-based dynamic model that predicts the changes in the foreground depth distribution between consecutive time steps. This is a key difference with regard to visible imagery,where the color/gray distribution of the foreground is typically assumed to be constant.Experiments carried out on two different depth-based databases demonstrate that the proposed combination of algorithms is able to obtain a more accurate segmentation of the foreground/background than other state-of-the art approaches.
منابع مشابه
Foreground Segmentation Using Adaptive Mixture Models in Color and Depth
Segmentation of novel or dynamic objects in a scene, often referred to as “background subtraction” or “foreground segmentation”, is a critical early in step in most computer vision applications in domains such as surveillance and human-computer interaction. All previously described, real-time methods fail to handle properly one or more common phenomena, such as global illumination changes, shad...
متن کاملAccurate real-time people counting for crowded environments
In this paper we describe a system for automatic people counting in crowded environments. The approach we propose is a counting-by-detection method based on depth imagery. It is designed to be deployed as an autonomous appliance for crowd analysis in video surveillance application scenarios. Our system performs foreground/background segmentation on depth image streams in order to coarsely segme...
متن کاملRegion based foreground segmentation combining color and depth sensors via logarithmic opinion pool decision
In this paper we present a novel foreground segmentation system that combines color and depth sensors information to perform a more complete Bayesian segmentation between foreground and background classes. The system shows a combination of spatial-color and spatial-depth region-based models for the foreground as well as color and depth pixel-wise models for the background in a Logarithmic Opini...
متن کاملA Dynamic MRF Model for Foreground Detection on Range Data Sequences of Rotating Multi-beam Lidar
In this paper, we propose a probabilistic approach for foreground segmentation in 360◦-view-angle range data sequences, recorded by a rotating multi-beam Lidar sensor, which monitors the scene from a fixed position. To ensure real-time operation, we project the irregular point cloud obtained by the Lidar, to a cylinder surface yielding a depth image on a regular lattice, and perform the segment...
متن کاملDenoising of Surveillance Video Using Adaptive Gaussian Mixture Model Based Segmentation Towards Effective Video Parameters Measurement
In recent times, capturization of video became more feasible with the advanced technologies in camera. Those videos get easily contaminated by noise due to the characteristics of image sensors. Surveillance sequences not only have static scenes but also dynamic scenes. Many efforts have been taken to reduce video noise. Averaging the frame as an image had limited denoising effect and resulted i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2014